Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/95748
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTorres Pérez, Mirelyses-ES
dc.contributor.authorDomínguez, Javieres-ES
dc.contributor.authorArribas de Paz, Luises-ES
dc.contributor.authorAmador Guerrra, Julioes-ES
dc.contributor.authorCiller Cutillas, Pedroes-ES
dc.contributor.authorGonzález García, Andréses-ES
dc.date.accessioned2024-11-12T12:47:59Z-
dc.date.available2024-11-12T12:47:59Z-
dc.date.issued2024-11-01es_ES
dc.identifier.issn0952-1976es_ES
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2024.109249es_ES
dc.identifier.urihttp://hdl.handle.net/11531/95748-
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractRural electrification planning is a complex process requiring careful consideration of various factors to ensure efficient and cost-effective solutions. Existing clustering methods in academic literature often fall short in this context, as they typically do not account for geographical barriers, restricted areas, and key electrical and geospatial metrics simultaneously. This can result in clusters that do not meet the energy needs of the study region, potentially causing inefficient energy distribution and increased costs. This study presents a novel clustering algorithm, RElect_MGEC (Rural Electrification Microgrid and Grid Extension Clustering), specifically designed for techno-economic planning in rural areas. The RElect_MGEC algorithm combines density-based and graph clustering methods to group households while considering constraints imposed by geographic barriers, electricity power, and distance from the generation center. The algorithm was implemented within the IntiGIS (Geographic Information System for Rural Electrification) model and evaluated using a real-world dataset of 10,995 unelectrified households in rural Yoro, Honduras. The evaluation involved comparisons with established clustering algorithms, focusing on metrics such as the number of valid clusters, Levelized Cost of Electricity (LCOE), and execution time. The results demonstrate the algorithm’s effectiveness in scenarios with equal and varying demands, highlighting its robustness, flexibility, and ability to achieve cost savings within shorter timeframes. Additionally, this approach enables the assessment of distribution infrastructures, such as microgrids and grid extensions, ensuring an effective power generation and distribution. The integration of the RElect_MGEC algorithm into IntiGIS results in an enhanced model that enables a comprehensive and informed decision-making process for rural electrification planning.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Engineering Applications of Artificial Intelligence, Periodo: 1, Volumen: 137, part B, Número: 109249, Página inicial: 1, Página final: 22es_ES
dc.titleA geospatial clustering algorithm and its integration into a techno-economic rural electrification planning modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsConstrained clustering Density-based clustering Graph-based clustering Rural electrification Geospatial analysis Techno-economic software toolen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1-s2.0-S0952197624014076-main.pdf7,27 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.