Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96189
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRajabdorri, Mohammades-ES
dc.contributor.authorTroffaes, Matthiases-ES
dc.contributor.authorKazemtabrizi, Behzades-ES
dc.contributor.authorSarvarizadeh Kouhpaye, Miades-ES
dc.contributor.authorSigrist, Lukases-ES
dc.contributor.authorLobato Miguélez, Enriquees-ES
dc.date.accessioned2024-11-25T16:42:31Z-
dc.date.available2024-11-25T16:42:31Z-
dc.date.issued2025-01-01es_ES
dc.identifier.issn0952-1976es_ES
dc.identifier.urihttps:doi.org10.1016j.engappai.2024.109617es_ES
dc.identifier.urihttp://hdl.handle.net/11531/96189-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThis paper presents a data-driven methodology for estimating under frequency load shedding (UFLS) in small power systems. UFLS plays a vital role in maintaining system stability by shedding load when the frequency drops below a specified threshold following loss of generation. Using a dynamic system frequency response (SFR) model we generate different values of UFLS (i.e., labels) predicated on a set of carefully selected operating conditions (i.e., features). Machine learning (ML) algorithms are then applied to learn the relationship between chosen features and the UFLS labels. A novel regression tree and the Tobit model are suggested for this purpose and we show how the resulting non-linear model can be directly incorporated into a mixed integer linear programming (MILP) problem. The trained model can be used to estimate UFLS in security-constrained operational planning problems, improving frequency response, optimizing reserve allocation, and reducing costs. The methodology is applied to the La Palma island power system, demonstrating its accuracy and effectiveness. The results confirm that the amount of UFLS can be estimated with the mean absolute error (MAE) as small as 0.179 MW for the whole process, with a model that is representable as a MILP for use in scheduling problems such as unit commitment among others.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Engineering Applications of Artificial Intelligence, Periodo: 1, Volumen: online, Número: Part B, Página inicial: 109617-1, Página final: 109617-11es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleData-driven estimation of the amount of under frequency load shedding in small power systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsNovel regression tree; Tobit model; Data-driven model; Island power systems; Machine learning; Under frequency load sheddingen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-327R3,53 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.