Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96206
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCalvo Báscones, Pabloes-ES
dc.contributor.authorMartín Martínez, Franciscoes-ES
dc.date.accessioned2024-11-25T16:44:40Z-
dc.date.available2024-11-25T16:44:40Z-
dc.date.issued2024-10-15es_ES
dc.identifier.issn0306-2619es_ES
dc.identifier.urihttps:doi.org10.1016j.apenergy.2024.123834es_ES
dc.identifier.urihttp://hdl.handle.net/11531/96206-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractRecommender systems play a critical role in optimizing building energy consumption by providing personalized advice based on data analytics and user preferences. However, the literature highlights the need for systems that can justify their recommendations, as many of these systems use non-transparent machine-learning techniques. This research introduces two distinct types of indicators with three main goals: to identify patterns of flexible consumption behavior using transparent and straightforward methods suitable for remote decision support systems, thereby eliminating the need for extensive databases; to evaluate the feasibility of installing solar panels on building facades, rooftops, and structures using high-resolution 3D models; and to enhance understanding through a quantitative assessment of the feasibility and suitability of integrating renewable energy sources, particularly photovoltaic systems. Flexible prosumers are scored by assessing their energy consumption level, consistency, and variability through the Flexible Consumption Indicators. Topology Indicators perform a quantitative assessment of the feasibility of support surfaces for installing photovoltaic panels, taking into account rooftop pitch angles, orientations, and surrounding and internal structures, identifying those areas exposed to sufficient levels of irradiation. This study, which uses actual consumption profiles and similar households' buildings 3D models, demonstrates how the proposed indicators can aid identifying users with flexible consumption profiles that reside in buildings compatible with renewable energy sources, aiding in decision-making process within the energy transition.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Applied Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 123834-1, Página final: 123834-15es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleIndicators for suitability and feasibility assessment of flexible energy resourceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsIndicators; Demand side management; Solar energy; Decision support systems; Building topologyen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-218R6,89 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.