Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96221
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMontero Guirao, Luis Manueles-ES
dc.contributor.authorBello Morales, Antonioes-ES
dc.contributor.authorReneses Guillén, Javieres-ES
dc.date.accessioned2024-11-25T16:46:17Z-
dc.date.available2024-11-25T16:46:17Z-
dc.date.issued2024-09-01es_ES
dc.identifier.issn0142-0615es_ES
dc.identifier.urihttps:doi.org10.1016j.ijepes.2024.110080es_ES
dc.identifier.urihttp://hdl.handle.net/11531/96221-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractSince its beginning, the computational performance of numerical optimization techniques has depended on utilizing efficient mathematical formulations to deal with large-size problems successfully. This fact is manifested in the unit commitment literature. Several approaches have been proposed to handle the complexity of accurately modeling real power systems. However, most of these methodologies focus on strengthening the technical features’ representations by reducing the number of constraints and variables of the associated optimization problem or approximating its relaxed feasible region to the integer one to improve resolution processes. Hence, the state-of-art of these effective procedures is periodically studied under operational research and commercial solvers developments. Nevertheless, the formulation comparisons frequently obviate analyzing the impact of the balance equations on the computational burden of the unit commitment problem. This constraint links every single technical restriction along the time span and sometimes provides an ample optimization space, sometimes a narrow one, directly affecting resolution proceedings. It can impose an electricity generation equal to demand, allow production excesses, include non-served energy, or establish profit-based relationships. This paper presents a computational analysis of the most popular balance equations, detailing solver performances and determining these methodologies’ tightness, compactness, and arduousness. Therefore, 1010 case studies were run utilizing different input profiles and optimality-convergence criteria.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: International Journal of Electrical Power & Energy Systems, Periodo: 1, Volumen: online, Número: , Página inicial: 110080-1, Página final: 110080-17es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleAnalyzing the computational performance of balance constraints in the medium-term unit commitment problem: tightness, compactness, and arduousnesses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsArduousness; Balance equation; Computational efficiency; Demand-constraint analysis; Medium-term representation; Optimization; Power systems; Thermal generation; Unit commitmenten-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-200R2,19 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.