Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96370
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDomínguez Gago, Maríaes-ES
dc.contributor.authorFernández Cardador, Antonioes-ES
dc.contributor.authorFernández Rodríguez, Adriánes-ES
dc.contributor.authorCucala García, María Asunciónes-ES
dc.contributor.authorRodríguez Pecharromán, Ramónes-ES
dc.contributor.authorUrosa Sánchez, Pabloes-ES
dc.date.accessioned2024-11-26T15:04:19Z-
dc.date.available2024-11-26T15:04:19Z-
dc.date.issued2025-01-01es_ES
dc.identifier.issn1364-0321es_ES
dc.identifier.urihttps:doi.org10.1016j.rser.2024.114904es_ES
dc.identifier.urihttp://hdl.handle.net/11531/96370-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThe imperative for moving towards a more sustainable world and against climate change and the immense potential for energy savings in electrified railway systems are well-established. Utilising regenerative energy generated during train braking represents a valuable opportunity for maximising these savings. Consequently, incorporating energy storage systems to store and reuse this regenerative energy has emerged as a crucial strategy. Energy storage technologies have become indispensable in achieving overall energy efficiency objectives. The wide array of available technologies provides a range of options to suit specific applications within the railway domain. This review thoroughly describes the operational mechanisms and distinctive properties of energy storage technologies that can be integrated into railway systems. A research review is carried out to determine the operating parameters of each technology, which are subsequently analysed and compared against the desired characteristics essential for railway applications. Despite their lower energy density, superconductive magnetic energy storage systems demonstrate superior efficiency, making them suitable for specific applications. In contrast, vanadium redox batteries face challenges for on board use due to maturity issues, heat emission requirements, and inefficiencies in chargedischarge cycles. Conversely, supercapacitors and Lithium-ion batteries are viable options for on board applications, and the first are preferred for their higher efficiency and cost-effectiveness. Based on their established operational maturity and performance, supercapacitors and flywheels are recommended for wayside energy storage systems. The insights from the analysis are supported by real-world examples of energy storage systems implementations in railway systems worldwide.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Renewable & Sustainable Energy Reviews, Periodo: 1, Volumen: online, Número: , Página inicial: 114904-1, Página final: 114904-21es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleReview on the use of energy storage systems in railway applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsEnergy storage; Railways systems; Regenerative energy; Energy efficiency; On board; Waysideen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-277R.pdf3,09 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.