Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96371
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGalici, Marcoes-ES
dc.contributor.authorGuarnizo Lemus, Cristianes-ES
dc.date.accessioned2024-11-26T15:04:26Z-
dc.date.available2024-11-26T15:04:26Z-
dc.date.issued2024-12-01es_ES
dc.identifier.issn0045-7906es_ES
dc.identifier.urihttps:doi.org10.1016j.compeleceng.2024.109817es_ES
dc.identifier.urihttp://hdl.handle.net/11531/96371-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractRenewable energy sources (RES) are becoming increasingly prevalent in power systems, but their intermittent and unpredictable nature challenges deterministic optimal generation scheduling. Stochastic planning or operating methodologies offer superior performance compared to deterministic approaches, making renewable energy generation scenarios increasingly valuable inputs for multistage decision-making problems. In this paper, we introduce and compare three data-driven approaches for generating probabilistic renewable energy scenarios. Numerical results from both simulated and real-world datasets demonstrate the accuracy and computational efficiency of these methods. Our proposed approaches provide a powerful tool for creating precise and efficient probabilistic renewable energy scenarios, which can enhance optimal generation scheduling in power systems with high RES penetration.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Computers and Electrical Engineering, Periodo: 1, Volumen: online, Número: Part C, Página inicial: 109817-1, Página final: 109817-18es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleData-driven approaches for generating probabilistic short-term renewable energy scenarioses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsBayesian linear regression; Gaussian processes; Probabilistic sampling; Probabilistic scenario generation; Solar-photovoltaic power; Wind poweren-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-317R.pdf1,9 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.