Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/9694
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFlach, Bruno C.es-ES
dc.contributor.authorNobrega Barroso, Luiz Augustoes-ES
dc.contributor.authorVeiga Pereira, Marioes-ES
dc.date.accessioned2016-06-27T03:05:50Z-
dc.date.available2016-06-27T03:05:50Z-
dc.date.issued01/02/2010es_ES
dc.identifier.issn1751-8687es_ES
dc.identifier.urihttp://hdl.handle.net/11531/9694-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractSince the liberalisation of the power industry, there has been a large amount of literature on the determination of optimal bidding decisions for price-maker energy producers. The vast majority of the work developed so far has focused on short-term horizons and may be viewed as successful approaches for systems whose operation is generally deterministic. In the case of price-maker hydro plants with significant storage capacity, however, the solution of the strategic bidding problem is more subtle. The reason is that hydro reservoirs allow the bidder to postpone energy production if future prices are expected to be higher than the current price. This demands the management of an energy-constrained resource and determines a time-coupling characteristic to the problem, implying that the bidding strategy should ideally take into account the following stages and consider the stochasticity of inflows. These aspects characterise the strategic bidding for price-maker hydro agents as a multi-stage stochastic programming problem, with significant computational challenges. The objective of this work is to present a new methodology for the strategic bidding problem of a price-maker hydropower-based company, taking into account several hydro plants, time-coupling and stochastic inflow scenarios. The proposed approach considers a deterministic residual demand curve and is based on stochastic dual dynamic programming (SDDP), which has been successfully applied to the least-cost hydrothermal scheduling problem. Since the technique requires the problem to be concave, a piecewise linear approximation of the expected future benefit function is proposed. The application of the methodology is exemplified with a real case study based on the hydrothermal system of El Salvador.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: IET Generation Transmission & Distribution, Periodo: 1, Volumen: 4, Número: 2, Página inicial: 299, Página final: 314es_ES
dc.titleLong-term optimal allocation of hydro generation for a price-maker company in a competitive market: latest developments and a stochastic dual dynamic programming approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsdynamic programming; hydroelectric power stations; power markets; stochastic processes;en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-10-075A.pdf819,51 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.