Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/97258
Título : | An Improvement of the Lower Bound on the Maximum Number of Halving Lines for Sets in the Plane with an Odd Number of Points |
Autor : | Rodrigo Hitos, Javier López, Mariló Magistrali, Danilo Alonso Pérez, Estrella |
Fecha de publicación : | 16-ene-2025 |
Resumen : | . In this paper, we give examples that improve the lower bound on the maximum number of halving lines for sets in the plane with 35, 59, 95, and 97 points and, as a consequence, we improve the current best upper bound of the rectilinear crossing number for sets in the plane with 35, 59, 95, and 97 points, provided that a conjecture included in the literature is true. As another consequence, we also improve the lower bound on the maximum number of halving pseudolines for sets in the plane with 35 points. These examples, and the recursive bounds for the maximum number of halving lines for sets with an odd number of points achieved, give a new insight in the study of the rectilinear crossing number problem, one of the most challenging tasks in Discrete Geometry. With respect to this problem, it is conjectured that, for all n multiples of 3, there are 3-symmetric sets of n points for which the rectilinear crossing number is attained |
Descripción : | Artículos en revistas |
URI : | https://doi.org/10.3390/axioms14010062 |
ISSN : | 2075-1680 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
axioms-14-00062-v2.pdf | 267,1 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.