Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/97675
Título : LLM Multi-agent Decision Optimization
Autor : de Curtò i Díaz, Joaquim
de Zarzà i Cubero, Irene
Calafate, Carlos T.
Fecha de publicación : 28-feb-2025
Editorial : Springer Nature (Berlín, Alemania)
Resumen : .
This paper delves into the cutting-edge domain of decision optimization within multi-agent systems, leveraging the prowess of Large Language Models (LLMs), particularly GPT-4. We explore the integration of LLMs in multi-agent frameworks to optimize decisions, a step beyond traditional decision-making processes. The study showcases how LLMs can process extensive datasets, extract nuanced insights, and suggest optimal solutions, significantly enhancing decision accuracy and efficiency in complex multi-agent environments. Our methodology encompasses the integration of LLMs into multi-agent systems, experimental validation of this approach, and an in-depth analysis of the impact of LLM-driven decision optimization in varied application scenarios. The article proposes a general framework where the integration of GPT-4 in multi-agent decision optimization processes leads to marked improvements across various scenarios.
Descripción : Capítulos en libros
URI : https://doi.org/10.1007/978-981-97-6469-3_1
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
amsta24-2_decurto_and_dezarza.pdf290,88 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.