Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/97767
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRajora, GopaL Lales-ES
dc.contributor.authorBertling Tjemberg, Linaes-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.date.accessioned2025-03-04T18:07:59Z-
dc.date.available2025-03-04T18:07:59Z-
dc.date.issued2024-09-11es_ES
dc.identifier.urihttp://hdl.handle.net/11531/97767-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractIn the context of global climate goals and the transition to sustainable energy, modern energy transportation and distribution systems play a crucial role. Electricity transportation and distribution systems would not function without power lines. One of the most challenges facing global power cable asset managers is efficiently managing the enormous and costly network of cables; most are getting closer or beyond their intended lifespan. Since HVDC systems are more economical and technically superior to HVAC systems for transmission over long distances, they have become increasingly important in the Power system. HVDC is preferred across 300–800 km for cable-based hookups and direct transmission schemes. This study aims to conduct a review study of the asset management strategies used for HVDC systems. Also, it explores the challenges and most recent advancements in asset management systems incorporating machine learning. Then, several machine learning algorithms used in recent studies are examined for asset management in power system applications.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherAuckland University of Technology; IEEE New Zealand North Section (Auckland, Nueva Zelanda)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: 18th International Conference on Probabilistic Methods Applied to Power Systems - PMAPS 2024, Página inicial: 1-6, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleOn advancements and challenges in asset management for HVDC systems: a machine learning perspectivees_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsPower Systems, High Voltage Direct Current (HVDC), Artificial Intelligence (AI), Machine Learning, Asset Management, and Power Transmission System.en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-092C.pdf886,6 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.