Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/98299
Título : | AI-Driven UAV and IoT Traffic Optimization: Large Language Models for Congestion and Emission Reduction in Smart Cities |
Autor : | Moraga, Álvaro de Curtò i Díaz, Joaquim de Zarzà i Cubero, Irene Calafate, Carlos T. |
Fecha de publicación : | 26-mar-2025 |
Resumen : | . Traffic congestion and carbon emissions remain pressing challenges in urban mobility. This study explores the integration of UAV (drone)-based monitoring systems and IoT sensors, modeled as induction loops, with Large Language Models (LLMs) to optimize traffic flow. Using the SUMO simulator, we conducted experiments in three urban scenarios: Pacific Beach and Coronado in San Diego, and Argüelles in Madrid. A Gemini2.0-Flash experimental LLM was interfaced with the simulation to dynamically adjust vehicle speeds based on real-time traffic conditions. Comparative results indicate that the AI-assisted approach significantly reduces congestion and CO2 emissions compared to a baseline simulation without AI intervention. This research highlights the potential of UAV-enhanced IoT frameworks for adaptive, scalable traffic management, aligning with the future of drone-assisted urban mobility solutions |
Descripción : | Artículos en revistas |
URI : | https://doi.org/10.3390/drones9040248 |
ISSN : | 2504-446X |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
202532613214952_drones-09-00248.pdf | 469,73 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.