Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/98299
Título : AI-Driven UAV and IoT Traffic Optimization: Large Language Models for Congestion and Emission Reduction in Smart Cities
Autor : Moraga, Álvaro
de Curtò i Díaz, Joaquim
de Zarzà i Cubero, Irene
Calafate, Carlos T.
Fecha de publicación : 26-mar-2025
Resumen : .
Traffic congestion and carbon emissions remain pressing challenges in urban mobility. This study explores the integration of UAV (drone)-based monitoring systems and IoT sensors, modeled as induction loops, with Large Language Models (LLMs) to optimize traffic flow. Using the SUMO simulator, we conducted experiments in three urban scenarios: Pacific Beach and Coronado in San Diego, and Argüelles in Madrid. A Gemini2.0-Flash experimental LLM was interfaced with the simulation to dynamically adjust vehicle speeds based on real-time traffic conditions. Comparative results indicate that the AI-assisted approach significantly reduces congestion and CO2 emissions compared to a baseline simulation without AI intervention. This research highlights the potential of UAV-enhanced IoT frameworks for adaptive, scalable traffic management, aligning with the future of drone-assisted urban mobility solutions
Descripción : Artículos en revistas
URI : https://doi.org/10.3390/drones9040248
ISSN : 2504-446X
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
202532613214952_drones-09-00248.pdf469,73 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.