Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/98451
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSánchez Pérez, Pabloes-ES
dc.contributor.authorSanz Cruzado, Javieres-ES
dc.contributor.authorBellogín, Alejandroes-ES
dc.date.accessioned2025-04-07T08:26:26Z-
dc.date.available2025-04-07T08:26:26Z-
dc.date.issued2025-04-03es_ES
dc.identifier.urihttps://doi.org/10.1007/978-3-031-88717-8_14es_ES
dc.descriptionCapítulos en libroses_ES
dc.description.abstract.es-ES
dc.description.abstractNeighborhood-based approaches remain widely used techniques in collaborative filtering recommender systems due to their versatility, simplicity, and efficiency. Traditionally, these algorithms consider similarity functions to measure how close user or item interactions are. However, their focus on capturing similar tastes often overlooks divergent preferences that could enhance recommendations. In this paper, we explore alternative methods to incorporate such information to improve beyond-accuracy performance in this type of recommenders. We define three mechanisms based on various modeling assumptions to integrate differing preferences into traditional nearest neighbors algorithms. Our comparison on four well-known and different datasets shows that our proposed approach can enhance the novelty and diversity of the recommendations while maintaining ranking accuracy. Our implementation is available at https://github.com/pablosanchezp/kNNDissimilarities.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherSpringer (Cham, Suiza)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: Advances in Information Retrieval: ECIR 2025. Lecture Notes in Computer Science, Página inicial: 187, Página final: 196es_ES
dc.titleImproving Novelty and Diversity of Nearest-Neighbors Recommendation by Exploiting Dissimilaritieses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderEMBARGADO HASTA 6 ABRIL 2026es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywords.es-ES
dc.keywordsCollaborative Filtering Neighborhood-based Recommender Systems Divergent Preferences Novelty and Diversityen-GB
Aparece en las colecciones: Artículos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.