Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/98482
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRodríguez-Muñoz de Baena, Inéses-ES
dc.contributor.authorCoronado Vaca, Maríaes-ES
dc.contributor.authorVaquero Lafuente, Estheres-ES
dc.date.accessioned2025-04-10T06:25:17Z-
dc.date.available2025-04-10T06:25:17Z-
dc.date.issued2025-04-09es_ES
dc.identifier.issn2331-1975es_ES
dc.identifier.urihttps://doi.org/10.1080/23311975.2025.2487219es_ES
dc.identifier.urihttp://hdl.handle.net/11531/98482-
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractThis study explores the application of transformer models directly for classification in predicting mergers and acquisitions (M&A) targets within the U.S. energy sector. The primary objective is to evaluate the capability and performance of various transformer-based models in directly predicting M&A target companies, while the secondary objective investigates the relationship between target companies and renewable energy terminology in their annual reports. We present a novel approach to predicting M&A targets by utilizing cutting-edge Natural Language Processing (NLP) techniques, such as fine-tuned transformer LLMs (Large Language Models) for direct classification. We analyze textual data from 200 publicly-listed US energy companies’ SEC-filings and employ FinBERT, ALBERT, and GPT-3-babage-002 as predictive models of M&A targets. We provide empirical evidence on LLMs’ capability in the direct classification of M&A target companies, with FinBERT utilizing oversampling, being the top-performing model due to its high precision and minimized false positives, critical for precise financial decision-making. Additionally, while the study revealed key differences in target and non-target report characteristics, it finds no significant evidence that M&A target companies use more renewable energy-related terminology. It is the first paper applying fine-tuned transformer-LLMs to predict M&A targets, effectively showcasing their capability for this task of direct classification as predictive models.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Cogent Business & Management, Periodo: 1, Volumen: 12, Número: 1, 2487219, Página inicial: 1, Página final: 28es_ES
dc.titleFine-tuning transformer models for M&A target prediction in the U.S. energy sectores_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsMergers and acquisitions(M&a); renewable energy;takeover targetprediction; green M&a;natural languageprocessing (nlP);transformer models; largelanguage models (llM)en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
202549143145976_FINE-T.PDF4,42 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.