Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/98769
Título : Inflammatory activity levels on patients with anti-TNF therapy: most important factors and a decision tree model based on REGISPONSER and RESPONDIA registries
Autor : Castro Corredor, David
Calvo Pascual, Luis Ángel
López Medina, Clementina
Fecha de publicación : 14-may-2025
Resumen : .
Background: The effectiveness of anti-tumour necrosis factor (TNF) therapy in spondyloarthritis is traditionally associated with factors such as age, obesity and disease subtypes. However, less-explored aspects, such as mental health, socioeconomic status and work type may also play a crucial role in determining inflammatory activity and therapeutic response. Objectives: To identify the most significant factors explaining inflammatory activity levels in patients treated with anti-TNF therapy and to develop an interpretable machine-learning model with good performance and minimal overfitting. Design: This is an observational, cross-sectional and multicentre study with socio-demographical and clinical data extracted from the Registry of Spondyloarthritis of Spanish Rheumatology (REGISPONSER) and Ibero-American Registry of Spondyloarthropathies (RESPONDIA) registries. Methods: We selected patients receiving anti-TNF therapy and applied five feature selection methods to identify key factors. We evaluated these factors using 182 machine learning models, and, finally, we selected a decision tree model that offered comparable performance with reduced overfitting. Results: Activity levels appear strongly influenced by quality-of-life indicators, particularly the SF-12 physical and mental components and Ankylosing Spondylitis Quality of Life scores. While factors such as age, weight, years of treatment and age at diagnosis have relevance, they are not necessary to obtain a pruned tree with similar cross-validated mean accuracy. Conclusion: Recognizing the central role of physical and mental well-being in managing disease activity can lead to better therapeutic strategies for chronic disease management.
Descripción : Artículos en revistas
URI : https://doi.org/10.1177/1759720X251332224
ISSN : 1759-7218
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
202551694416537_therapeutical diseases.pdf1,47 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.