Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/99676
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorNájera Álvarez, Pabloes-ES
dc.contributor.authorMa, Wenchaoes-ES
dc.contributor.authorSorrel Luján, Miguel Ángeles-ES
dc.contributor.authorAbad, Francisco J.es-ES
dc.date.accessioned2025-06-27T07:13:00Z-
dc.date.available2025-06-27T07:13:00Z-
dc.date.issued2025-06-14es_ES
dc.identifier.issn0385-7417es_ES
dc.identifier.urihttps://doi.org/10.1007/s41237-025-00263-8es_ES
dc.identifier.urihttp://hdl.handle.net/11531/99676-
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractCognitive Diagnostic Models (CDMs) categorize examinees into latent classes with distinct profiles of attribute mastery based on their responses to the test items. Most of these models have traditionally focused on dichotomous responses (i.e., correct vs. incorrect) from multiple-choice items. The sequential process model (SPM) extends the applicability of CDM by modeling sequentially graded responses that stem from different item formats (e.g., constructed-response items). The SPM is flexible enough to accommodate a different response function for each category, which can also measure a distinct set of attributes. Empirical Q-matrix validation and category-level model selection have been already proposed for the SPM, which help identify the best specification for each category. However, absolute item-level fit has not been addressed for the SPM yet, preventing from determining whether such specifications are appropriate. The present study adapts three well-known item-fit statistics to the SPM and evaluates their performance through a simulation study. The results show that the statistics are usually conservative, but have an adequate power at detecting relevant misspecifications (i.e., those that provoke a substantial disruption in item parameter estimation). Practical implications and recommendations are provided.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Behaviormetrika, Periodo: 1, Volumen: Online first, Número: , Página inicial: en línea, Página final: en líneaes_ES
dc.titleAssessing item-level fit for the sequential G-DINA modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderEmbargo de 12 meses para la versión aceptadaes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywords.es-ES
dc.keywordsCognitive diagnosis modeling · Graded responses · Item fit · Absolute fit · Sequential process modelen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
20256239921771_2025 - Behaviormetrika - Najera et .pdf2,92 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.