• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and manufacturing of dielectric resonators via 3D printing of composite polymerceramic filaments

Thumbnail
View/Open
IIT-24-276R (4.309Mb)
IIT-24-276R_preview (3.447Kb)
Date
2024-09-02
Author
Sofokleous, Paraskevas
Paz Jiménez, Eva
Herraiz Martínez, Francisco Javier
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Rapid technological advancements in recent years have opened the door to innovative solutions in the field of telecommunications and wireless systems; thus, new materials and manufacturing methods have been explored to satisfy this demand. This paper aims to explore the application of low-cost, commercially available 3D-printed ceramicpolymer composite filaments to design dielectric resonators (DRs) and check their suitability for use in high-frequency applications. Three-dimensional printing was used to fabricate the three-dimensional dielectric resonant prototypes. The filaments were characterized in terms of their thermal and mechanical properties and quality of printability. Additionally, the filaments’ dielectric properties were analyzed, and the prototypes were designed and simulated for a target frequency of ~2.45 GHz. Afterward, the DRs were successfully manufactured using the 3D printing technique, and no post-processing techniques were used in this study. A simple and efficient feeding method was used to finalize the devices, while the printed DRs’ reflection coefficient (S11) was measured. Results on prototype size, manufacture ease, printability, cost per volume, and bandwidth (BW) were used to evaluate the materials’ suitability for high-frequency applications. This research presents an easy and low-cost manufacturing process for DRs, opening a wide range of new applications and revolutionizing the manufacturing of 3D-printed high-frequency devices.
 
URI
https:doi.org10.3390polym16182589
http://hdl.handle.net/11531/100654
Design and manufacturing of dielectric resonators via 3D printing of composite polymerceramic filaments
Tipo de Actividad
Artículos en revistas
ISSN
2073-4360
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

additive manufacturing; material extrusion; 3D printing; dielectric resonators; polymers; ceramics
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback