• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smart imputation, better recommendations: improving traditional Point-of-Interest recommendation through data augmentation

Thumbnail
View/Open
IIT-25-187R_preprint (3.708Mb)
IIT-25-187R_preview (3.045Kb)
Date
2025-06-10
Author
Sánchez Pérez, Pablo
Bellogín, Alejandro
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Data sparsity is a persistent challenge in recommender systems, specially in specific domains like Point-of-Interest (POI) recommendation, where it significantly impacts model performance. While classical recommender systems have used various imputation and data augmentation mechanisms to address data sparsity, these methods have not been extensively explored in the POI recommendation domain. In this work, we propose a generic imputation framework to study the use of data augmentation techniques to generate synthetic check-ins and analyze their effects on the POI recommendation scenario. Our main goal is to enhance the performance of various traditional recommenders by increasing the training set interactions, considering specific characteristics of the domain, such as geographical information. We apply these techniques in six different cities from a global Foursquare check-in dataset, as well as in two additional cities from the Gowalla dataset, and a separate dataset from Yelp, ensuring a comprehensive evaluation across multiple data sources. Our imputation approach evidences improvements for most models. In several cases, these improvements exceeded 100 for ranking accuracy, measured in terms of nDCG, without considerably compromising novelty or diversity. Data and code is released at https:github.compablosanchezpImputationForPOIRecsys.
 
URI
https:doi.org10.11453744347
http://hdl.handle.net/11531/101268
Smart imputation, better recommendations: improving traditional Point-of-Interest recommendation through data augmentation
Tipo de Actividad
Artículos en revistas
ISSN
2157-6904
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Information systems → Recommender systems; Information extraction; Point-Of-Interest, Imputation, Temporal evaluation
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback