• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Human vs Machine Learning: Best Approach to Early Detect University Dropout Rates

Thumbnail
Ver/
20262493156679_Human vs Machine TEEM 2024.pdf (296.6Kb)
Fecha
2025-07-15
Autor
Aguayo Martín, Sofía
Donate-Beby, Belén
Amo-Filva, Daniel
Llauró, Alba
Simón Grabalos, David
Alsina Claret, María
Fonseca Escudero, David
Necchi, Silvia
Romero Yesa, Susana
Aláez Martínez, Marian
Torres Lucas, Jorge
Martínez Felipe, María
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
.
 
.The high student dropout rates and academic failuresin Spanish higher education institutions have been a persistent issue. Spain is among the European Union countries with the worst dropout rates, with recent data from the University Ministry indicating a 33.2% dropout rate in the 2022–2023 academic year. The multifaceted nature of dropout factors includes low academic performance, poor social support, low socio-economic status, pessimism, and lack of motivation. Despite efforts to address these issues, dropout rates remain high, necessitating more effective solutions. This study employs a longitudinal design to test the alignment of tutors’ and students’ perceptions with machine learning predictions. The analysissuggeststhat a combined approach, integrating human insights and machine learning, enhances predictive accuracy. The findings highlight the critical role of human judgment in capturing qualitative aspects that data-driven models might miss, advocating for a synergistic approach to improve educational outcomes.
 
URI
https://doi.org/10.1007/978-981-96-5658-5_111
Human vs Machine Learning: Best Approach to Early Detect University Dropout Rates
Tipo de Actividad
Capítulos en libros
Palabras Clave
.
.Higher Education · Early Dropout · Machine Learning · Prediction · Tutoring · First-year Student
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias