• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 1.- Docencia
  • ICAI Escuela Técnica Superior de Ingeniería
  • Doble Grado en Ingeniería en Tecnologías Industriales y Administración y Dirección de Empresas
  • KIA-Guías Docentes
  • Ver ítem
  •   DSpace Principal
  • 1.- Docencia
  • ICAI Escuela Técnica Superior de Ingeniería
  • Doble Grado en Ingeniería en Tecnologías Industriales y Administración y Dirección de Empresas
  • KIA-Guías Docentes
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applying intelligent multi-agents to reduce false alarms in wind turbine monitoring systems

Thumbnail
Ver/
Guía Docente.pdf (148.9Kb)
IIT-22-200R (3.487Mb)
IIT-22-200R_preview (2.927Kb)
Fecha
2022-10-01
Autor
Elías Teixeira, Weldon Carlos
Sanz Bobi, Miguel Ángel
Limão Oliveira, Roberto Célio
Director/Coordinador
Cano de Santayana Ortega, Mercedes
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This study proposes a method for improving the capability of a data-driven multi-agent system (MAS) to perform condition monitoring and fault detection in industrial processes. To mitigate the false fault-detection alarms, a co-operation strategy among software agents is proposed because it performs better than the individual agents. Few steps transform this method into a valuable procedure for improving diagnostic certainty. First, a failure mode and effects analysis are performed to select physical monitoring signals of the industrial process that allow agents to collaborate via shared signals. Next, several artificial neural network (ANN) models are generated based on the normal behavior operation conditions of various industrial subsystems equipped with monitoring sensors. Thereafter, the agents use the ANN-based expected behavior models to prevent false alarms by continuously monitoring the measurement samples of physical signals that deviate from normal behavior. Finally, this method is applied to a wind turbine. The system and tests use actual data from a wind farm in Spain. The results show that the collaboration among agents facilitates the effective detection of faults and can significantly reduce false alarms, indicating a notable advancement in the industrial maintenance and monitoring strategy.
 
URI
https:doi.org10.3390en15197317
Applying intelligent multi-agents to reduce false alarms in wind turbine monitoring systems
Tipo de Actividad
Artículos en revistas
Créditos
6.0
ISSN
1996-1073
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

multi-agent systems (MAS); artificial neural networks (ANN); false alarm problem; condition monitoring; wind turbines
Colecciones
  • KIA-Guías Docentes
  • KTI-Guías Docentes
  • Asignaturas

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias