Mostrar el registro sencillo del ítem

dc.contributor.advisorCano de Santayana Ortega, Mercedeses-Es
dc.contributor.authorElías Teixeira, Weldon Carloses-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorLimão Oliveira, Roberto Célioes-ES
dc.contributor.other, Departamento de Ingeniería Mecánicaes_ES
dc.date.accessioned2021-07-15T17:34:57Z
dc.date.available2021-07-15T17:34:57Z
dc.date.issued2022-10-01es_ES
dc.identifier.issn1996-1073es_ES
dc.identifier.otherE000005017es_ES
dc.identifier.urihttps:doi.org10.3390en15197317es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThis study proposes a method for improving the capability of a data-driven multi-agent system (MAS) to perform condition monitoring and fault detection in industrial processes. To mitigate the false fault-detection alarms, a co-operation strategy among software agents is proposed because it performs better than the individual agents. Few steps transform this method into a valuable procedure for improving diagnostic certainty. First, a failure mode and effects analysis are performed to select physical monitoring signals of the industrial process that allow agents to collaborate via shared signals. Next, several artificial neural network (ANN) models are generated based on the normal behavior operation conditions of various industrial subsystems equipped with monitoring sensors. Thereafter, the agents use the ANN-based expected behavior models to prevent false alarms by continuously monitoring the measurement samples of physical signals that deviate from normal behavior. Finally, this method is applied to a wind turbine. The system and tests use actual data from a wind farm in Spain. The results show that the collaboration among agents facilitates the effective detection of faults and can significantly reduce false alarms, indicating a notable advancement in the industrial maintenance and monitoring strategy.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Energies, Periodo: 1, Volumen: online, Número: 19, Página inicial: 7317-1, Página final: 7317-30es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleApplying intelligent multi-agents to reduce false alarms in wind turbine monitoring systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsmulti-agent systems (MAS); artificial neural networks (ANN); false alarm problem; condition monitoring; wind turbinesen-GB
asignatura.cursoacademico2022-2023es_ES
asignatura.periodoes_ES
asignatura.creditos6.0es_ES
asignatura.tipoBásicoes_ES


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem