Mostrar el registro sencillo del ítem

dc.contributor.advisorFernandes Ribeiro, Ana Sofía
dc.contributor.authorGarcía Duarte, Luciaes-ES
dc.contributor.authorCifuentes Quintero, Jenny Alexandraes-ES
dc.contributor.authorMarulanda García, Geovanny Albertoes-ES
dc.contributor.otherUniversidad Pontificia Comillas, Escuela Universiaria de Enfermería Y Fisioterapiaes_ES
dc.date.accessioned2021-07-16T08:12:03Z
dc.date.available2021-07-16T08:12:03Z
dc.date.issued2023-05-01es_ES
dc.identifier.issn1436-3240es_ES
dc.identifier.urihttps:doi.org10.1007s00477-022-02358-0es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractTime series forecasting of meteorological variables, such as the hourly air temperature, has multiple benefits for industry, agriculture, and the environment. Due to the high accuracy required for the associated short-term predictions, traditional methods cannot satisfy the requirements and generally ignore spatial dependencies. This paper proposes a deep Graph Convolutional Long Short Term Memory Neural Network (GCN-LSTM) technique to tackle the time series prediction problem in air temperature forecasting. In the proposed methodology, temporal and spatial-based imputation approaches have been employed to recover the weather variables missing values. The proposed approach is validated using real, open weather data from 37 meteorological stations in Spain. Performed analysis indicates that GCN-LSTM showed superior performance when compared with various state-of-the-art Deep Learning based models found in the literature, resulting in a more robust and computationally efficient model for forecasting air temperature in many meteorological stations simultaneously.es-ES
dc.description.abstractTime series forecasting of meteorological variables, such as the hourly air temperature, has multiple benefits for industry, agriculture, and the environment. Due to the high accuracy required for the associated short-term predictions, traditional methods cannot satisfy the requirements and generally ignore spatial dependencies. This paper proposes a deep Graph Convolutional Long Short Term Memory Neural Network (GCN-LSTM) technique to tackle the time series prediction problem in air temperature forecasting. In the proposed methodology, temporal and spatial-based imputation approaches have been employed to recover the weather variables missing values. The proposed approach is validated using real, open weather data from 37 meteorological stations in Spain. Performed analysis indicates that GCN-LSTM showed superior performance when compared with various state-of-the-art Deep Learning based models found in the literature, resulting in a more robust and computationally efficient model for forecasting air temperature in many meteorological stations simultaneously.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Stochastic Environmental Research and Risk Assessment, Periodo: 1, Volumen: online, Número: 5, Página inicial: 1649, Página final: 1667es_ES
dc.subjectUNESCO::32 Medicina::3201 Ciencias clínicas::320199 Otras especialidades (Enfermería)es_ES
dc.subjectUNESCO::32 Medicina::3201 Ciencias clínicas::320107 Geriatríaes_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT) - Innovación docente y Analytics (GIIDA)es_ES
dc.titleShort-term spatio-temporal forecasting of air temperatures using deep graph convolutional neural networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsAir temperature forecasting; Short-term forecasting; Deep learning; Deep graph convolutional neural networks; Missing values imputationes-ES
dc.keywordsAir temperature forecasting; Short-term forecasting; Deep learning; Deep graph convolutional neural networks; Missing values imputationen-GB


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem