Mostrar el registro sencillo del ítem
Simplification of λ-ring expressions in the Grothendieck ring of Chow motives
| dc.contributor.advisor | de la Torre Montero, Julio César | |
| dc.contributor.author | Alfaya Sánchez, David | es-ES |
| dc.contributor.other | Universidad Pontificia Comillas, Escuela Universiaria de Enfermería Y Fisioterapia | es_ES |
| dc.date.accessioned | 2021-07-16T09:01:27Z | |
| dc.date.available | 2021-07-16T09:01:27Z | |
| dc.date.issued | 2022-12-01 | es_ES |
| dc.identifier.issn | 0938-1279 | es_ES |
| dc.identifier.uri | https:doi.org10.1007s00200-022-00558-3 | es_ES |
| dc.description | Artículos en revistas | es_ES |
| dc.description.abstract | The Grothendieck ring of Chow motives admits two natural opposite λ-ring structures, one of which is a special structure allowing the definition of Adams operations on the ring. In this work I present algorithms which allow an effective simplification of expressions that involve both λ-ring structures, as well as Adams operations. In particular, these algorithms allow the symbolic simplification of algebraic expressions in the sub-λ-ring of motives generated by a finite set of curves into polynomial expressions in a small set of motivic generators. As a consequence, the explicit computation of motives of some moduli spaces is performed, allowing the computational verification of some conjectural formulas for these spaces. | es-ES |
| dc.description.abstract | The Grothendieck ring of Chow motives admits two natural opposite λ-ring structures, one of which is a special structure allowing the definition of Adams operations on the ring. In this work I present algorithms which allow an effective simplification of expressions that involve both λ-ring structures, as well as Adams operations. In particular, these algorithms allow the symbolic simplification of algebraic expressions in the sub-λ-ring of motives generated by a finite set of curves into polynomial expressions in a small set of motivic generators. As a consequence, the explicit computation of motives of some moduli spaces is performed, allowing the computational verification of some conjectural formulas for these spaces. | en-GB |
| dc.format.mimetype | application/pdf | es_ES |
| dc.language.iso | en-GB | es_ES |
| dc.source | Revista: Applicable Algebra in Engineering, Communication and Computing, Periodo: 1, Volumen: online, Número: 6, Página inicial: 599, Página final: 628 | es_ES |
| dc.subject | UNESCO::32 Medicina::3201 Ciencias clínicas::320199 Otras especialidades (Enfermería) | es_ES |
| dc.subject | UNESCO::32 Medicina::3207 Patología::320713 Oncología | es_ES |
| dc.subject | UNESCO::32 Medicina::3208 Farmacodinámica::320806 Quimioterapia | es_ES |
| dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
| dc.title | Simplification of λ-ring expressions in the Grothendieck ring of Chow motives | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
| dc.rights.holder | es_ES | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
| dc.keywords | Lambda-rings; Symbolic computations of motives; Chow motives; Moduli spaces; Higgs bundles moduli space | es-ES |
| dc.keywords | Lambda-rings; Symbolic computations of motives; Chow motives; Moduli spaces; Higgs bundles moduli space | en-GB |


