Mostrar el registro sencillo del ítem

dc.contributor.advisorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorLópez Soto, Ignacioes-ES
dc.contributor.otherUniversidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)es_ES
dc.date.accessioned2021-09-20T07:35:59Z
dc.date.available2021-09-20T07:35:59Z
dc.date.issued2022es_ES
dc.identifier.urihttp://hdl.handle.net/11531/61470
dc.descriptionGrado en Ingeniería en Tecnologías de Telecomunicaciónes_ES
dc.description.abstractLas tormentas geomagnéticas solares pueden causar daños a satélites y provocar apagones eléctricos en la Tierra. Existen índices, como el Kp, que miden la intensidad de las perturbaciones geomagnéticas en un cierto periodo de tiempo. En este proyecto se entrenan y optimizan dos modelos de aprendizaje automático, uno basado en redes Long Short-Term Memory (LSTM) y otro basado en redes convolucionales, para la predicción de valores futuros del índice Kp. Para ello, se hace uso de datos públicos sobre las medidas del Kp y de otras variables que utilizamos como entradas de los modelos. Estos modelos se utilizan conjuntamente para robustecer las predicciones. El objetivo del trabajo es la creación de una aplicación interactiva que sea capaz de utilizar los dos modelos mencionados para detectar anomalías en sus predicciones y alertar así de las tormentas solares. Finalmente, conseguimos cumplir con los objetivos del proyecto, creando una aplicación capaz de clasificar los días por colores como los de un semáforo, en función de la certeza con la que afirma que ha habido tormenta solar. De hecho, consigue clasificar de amarillo o rojo, que representan una mayor probabilidad de tormenta, todos los días en los que hay al menos un periodo de tormenta electromagnética. Además, la aplicación incluye los datos originales del Kp para poder contrastarlos con los resultados de la aplicación.es-ES
dc.description.abstractGeomagnetic storms can cause damages to satellites and power outages in Earth. There are indices, such as the Kp index, which measure the magnitude of the geomagnetic disturbances over a period of time. In this project two different machine learning models are trained and optimized in order to predict future Kp index values. The first one is based on Long Short-Term Memory (LSTM) recurrent neural networks. The second one is based on convolutional neural networks. Public data containing measures of the Kp index as well as other variables used as inputs of the models are utilized. The two previously mentioned models are then used jointly to improve their predictions. The aim of this project is to create an interactive application capable of using both models to detect outliers in their predictions and use them to alert of solar storms. Finally, all objectives set for the project are met, creating an application capable of classifying days with different colors, based on the colors of a traffic light, depending on how certain it is that there has been a storm. In fact, it successfully classifies as yellow or red, which represent a higher probability of there being a storm, every day with at least one period of solar storms. Furthermore, the application displays the original Kp data so that the user can compare it to the results of the application.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoes-ESes_ES
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/es_ES
dc.subject25 Ciencias de la Tierra y del espacioes_ES
dc.subject2501 Ciencias de la atmósferaes_ES
dc.subject33 Ciencias tecnológicases_ES
dc.subject3325 Tecnología de las telecomunicacioneses_ES
dc.subject.otherKTT (GITT)es_ES
dc.titleAplicación de técnicas de aprendizaje automático para evaluar y predecir la actividad geomagnética solar en las comunicacioneses_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses_ES
dc.keywordsLSTM, Red neuronal, Detección de anomalías, Kp, Tormenta solares-ES
dc.keywordsLSTM, Neural network, Outlier detection, Kp, Solar stormen-GB


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 United States
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 United States