Comparativa de modelos de predicción de mantenimiento predictivo y exploración de datos de motores turbofán de la NASA
Resumen
Este proyecto se centra en la comparación de modelos de predicción de mantenimiento predictivo y análisis de datos de motores turbofán usando el conjunto de datos C-MAPSS de la NASA. El objetivo es evaluar diferentes modelos dentro del Machine Learning, como Support Vector Regression (SVR), Random Forest, Redes Neuronales Convolucionales (1D-CNN) y Redes Neuronales de Memoria a Largo Plazo (LSTM), todo para predecir la Remaining Useful Life (RUL) de los motores. This project focuses on the comparison of predictive maintenance models and the analysis of turbofan engine data using the NASA C-MAPSS dataset. The objective is to evaluate different models within Machine Learning, such as Support Vector Regression (SVR), Random Forest, XGBoost, Convolutional Neural Networks (1D-CNN), and Long Short-Term Memory Networks (LSTM), to predict the Remaining Useful Life (RUL) of engines.
Trabajo Fin de Grado
Comparativa de modelos de predicción de mantenimiento predictivo y exploración de datos de motores turbofán de la NASATitulación / Programa
Grado en Ingeniería en Tecnologías de Telecomunicación y Grado en Análisis de Negocios/Business AnalyticsMaterias/ categorías / ODS
KTT (GITT)Palabras Clave
Mantenimiento predictivo, Machine Learning, CMAPSS, NASA, Remaining Useful Life (RUL), Motores turbofán, SVR, Random Forest,1D-CNN, LSTMPredictive maintenance, Machine Learning, C-MAPSS, NASA, Remaining Useful Life (RUL), Turbofan engines, SVR, Random Forest, 1D-CNN, LSTM.Bluetooth, Mobile, Indoor