Mostrar el registro sencillo del ítem

dc.contributor.authorGómez Pérez, Jesús Davides-ES
dc.contributor.authorLatorre Canteli, Jesús Maríaes-ES
dc.contributor.authorRamos Galán, Andréses-ES
dc.contributor.authorPerea Sánchez, Alejandroes-ES
dc.contributor.authorSanz González, Pabloes-ES
dc.contributor.authorHernández González, Franciscoes-ES
dc.date.accessioned2024-02-20T16:55:21Z
dc.date.available2024-02-20T16:55:21Z
dc.date.issued2024-04-01es_ES
dc.identifier.issn0306-2619es_ES
dc.identifier.urihttps:doi.org10.1016j.apenergy.2024.122688es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractIn decision-making under uncertainty, a robust representation of uncertainty is vital for optimal operational and strategic solutions. We extend existing methods by utilizing Fourier decomposition to create multivariate synthetic time series, capturing stochastic seasonal patterns while preserving correlations. These synthetic time series are transformed into a recombining scenario tree via K-means clustering. To enhance the resulting policy in the Stochastic Dual Dynamic Programming (SDDP) framework, we propose an additional sampling within scenario-tree nodes to consider a better representation of the cost-to-go function. A convergence proof for this sampling technique is provided. Moreover, two new stopping criteria are introduced for better solution accuracy and robustness. The first criterion extends traditional stopping rules to all scenario-tree nodes. The second criterion enforces a minimum count of Benders cuts per node, promoting accurate and robust solutions. Our approach is evaluated on the Spanish hydrothermal system, incorporating synthetic time series with seasonal-trend uncertainty in optimization and simulation. Policies from traditional SDDP and our technique were tested over a thousand realizations, demonstrating that our proposals yield reservoir operation policies closer to the thresholds set by the operator compared to traditional SDDP. Computational efficiency is maintained. The proposed sampling mitigates the impact of discretizing stochastic variables into scenario trees by evaluating more scenarios per node. Our framework offers robust policies under uncertainty through stochastic seasonal patterns by Fourier analysis, novel SDDP sampling, and additional stopping criteria.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Applied Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 122688-1, Página final: 122688-18es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleImproving operating policies in stochastic optimization: an application to the medium-term hydrothermal scheduling problemes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsTime series; Fourier analysis; Optimization methods; Stochastic programming; SDDP; Sampling methodsen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem