New upper bounds for ramanujan primes
View/ Open
Date
2018-01-01Estado
info:eu-repo/semantics/publishedVersionMetadata
Show full item recordAbstract
. For n ≥ 1, the n
th Ramanujan prime is defined as the smallest
positive integer Rn such that for all x ≥ Rn, the interval ( x
2
, x] has
at least n primes. We show that for every > 0, there is a positive
integer N such that if α = 2n
1 +
log 2 +
log n + j(n)
, then Rn < p[α]
for
all n > N, where pi
is the i
th prime and j(n) > 0 is any function that
satisfies j(n) → ∞ and nj0
(n) → 0
New upper bounds for ramanujan primes
Tipo de Actividad
Artículos en revistasISSN
0017-095XPalabras Clave
.11A41; 11N05