• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Damage clasification in composite materials using neural networks

Thumbnail
Ver/
IIT-24-353C.pdf (521.0Kb)
Fecha
2024-11-04
Autor
Tais, Carlos E.
Fontana, Juan M.
Molisani Yolitti, Leonardo
O’Brien, Ronald
Ballesteros Iglesias, María Yolanda
del Real Romero, Juan Carlos
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
Composite materials are widely employed in critical industrial applications, where their use has surged due to their numerous advantages over traditional materials. However, these benefits can be compromised if adequate quality control techniques are not implemented, particularly for detecting structural damage. Acoustic emission is a nondestructive technique commonly used for damage detection. By leveraging artificial intelligence tools to efficiently process emitted signals, the detection and classification process can be automated. This study utilizes sound pressure levels to diagnose failures in fiberglass-reinforced (GFRP) epoxy composite beams. A pattern recognition system based on Artificial Neural Network (ANN) algorithms is employed for diagnosis. To ensure data variability, the classifier was trained and validated using preprocessed acoustic signals from multiple healthy and damaged beams in various locations. Testing was conducted using test results from specimens not used for training and validation, ensuring the ANN's robustness. The results demonstrate a high fault detection percentage, confirming the reliability of the ANN.
 
URI
http://hdl.handle.net/11531/97760
Damage clasification in composite materials using neural networks
Tipo de Actividad
Capítulos en libros
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Damage detection, Sound Pressure Level, Neural Networks.
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias