Show simple item record

dc.contributor.authorTais, Carlos E.es-ES
dc.contributor.authorFontana, Juan M.es-ES
dc.contributor.authorMolisani Yolitti, Leonardoes-ES
dc.contributor.authorO’Brien, Ronaldes-ES
dc.contributor.authorBallesteros Iglesias, María Yolandaes-ES
dc.contributor.authordel Real Romero, Juan Carloses-ES
dc.date.accessioned2025-03-04T18:07:23Z
dc.date.available2025-03-04T18:07:23Z
dc.date.issued2024-11-04es_ES
dc.identifier.urihttp://hdl.handle.net/11531/97760
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractComposite materials are widely employed in critical industrial applications, where their use has surged due to their numerous advantages over traditional materials. However, these benefits can be compromised if adequate quality control techniques are not implemented, particularly for detecting structural damage. Acoustic emission is a nondestructive technique commonly used for damage detection. By leveraging artificial intelligence tools to efficiently process emitted signals, the detection and classification process can be automated. This study utilizes sound pressure levels to diagnose failures in fiberglass-reinforced (GFRP) epoxy composite beams. A pattern recognition system based on Artificial Neural Network (ANN) algorithms is employed for diagnosis. To ensure data variability, the classifier was trained and validated using preprocessed acoustic signals from multiple healthy and damaged beams in various locations. Testing was conducted using test results from specimens not used for training and validation, ensuring the ANN's robustness. The results demonstrate a high fault detection percentage, confirming the reliability of the ANN.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherInstitute of Electrical and Electronics Engineers; Universidad Tecnológica Nacional (San Nicolás de los Arroyos, Argentina)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: IEEE Biennial Congress of Argentina - ARGENCON 2024, Página inicial: 1-6, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleDamage clasification in composite materials using neural networkses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsDamage detection, Sound Pressure Level, Neural Networks.en-GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Show simple item record