Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/100543
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGómez Pérez, Jesús Davides-ES
dc.contributor.authorLabora Gómez, Franciscoes-ES
dc.contributor.authorLatorre Canteli, Jesús Maríaes-ES
dc.contributor.authorRamos Galán, Andréses-ES
dc.date.accessioned2025-07-10T14:20:17Z-
dc.date.available2025-07-10T14:20:17Z-
dc.date.issued2025-06-01es_ES
dc.identifier.issn0960-1481es_ES
dc.identifier.urihttps:doi.org10.1016j.renene.2025.122730es_ES
dc.identifier.urihttp://hdl.handle.net/11531/100543-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThe continuous rise of renewable energy in the global energy mix highlights the need to analyze and enhance traditional energy plants’ flexibility to support integration. Hydropower, with its rapid response capabilities and significant energy storage, plays a vital role in this context. However, simplifications are required due to the complex interconnections among cascaded hydropower plants and the inherent uncertainty of water inflows. This study presents a data-driven methodology for representing hydropower plants physically and through equivalent energy models, accounting for inflow uncertainties implicitly. Using historical data, we apply analytical techniques – including auxiliary linear models, load-duration curves, and filtering methods in linear regressions – to configure key hydropower parameters such as water inflows, reservoir boundaries, and hydropower plant production limits. These methods can be applied across hydro systems of different scales. We have validated our approach for the Spanish system for 2019 and 2025, demonstrating its efficacy.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Renewable Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 122730-1, Página final: 122730-14es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleEfficient hydropower modeling for medium-term hydrothermal planning using data-driven approacheses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsEquivalent hydropower plants; Mid-term planning models; K-means; Linear regression models; Fourier series filtering; Ridge regularization; Linear optimization modelsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-050R_preprint1,55 MBUnknownVisualizar/Abrir
IIT-25-050R_preview3,02 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.