Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/100543
Título : Efficient hydropower modeling for medium-term hydrothermal planning using data-driven approaches
Autor : Gómez Pérez, Jesús David
Labora Gómez, Francisco
Latorre Canteli, Jesús María
Ramos Galán, Andrés
Fecha de publicación : 1-jun-2025
Resumen : 
The continuous rise of renewable energy in the global energy mix highlights the need to analyze and enhance traditional energy plants’ flexibility to support integration. Hydropower, with its rapid response capabilities and significant energy storage, plays a vital role in this context. However, simplifications are required due to the complex interconnections among cascaded hydropower plants and the inherent uncertainty of water inflows. This study presents a data-driven methodology for representing hydropower plants physically and through equivalent energy models, accounting for inflow uncertainties implicitly. Using historical data, we apply analytical techniques – including auxiliary linear models, load-duration curves, and filtering methods in linear regressions – to configure key hydropower parameters such as water inflows, reservoir boundaries, and hydropower plant production limits. These methods can be applied across hydro systems of different scales. We have validated our approach for the Spanish system for 2019 and 2025, demonstrating its efficacy.
Descripción : Artículos en revistas
URI : https:doi.org10.1016j.renene.2025.122730
http://hdl.handle.net/11531/100543
ISSN : 0960-1481
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-050R_preprint1,55 MBUnknownVisualizar/Abrir
IIT-25-050R_preview3,02 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.