Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/101265
Título : Boosting Deep Reinforcement Learning with Semantic Knowledge for Robotic Manipulators
Autor : Güitta López, Lucía
Boal Martín-Larrauri, Jaime
López López, Álvaro Jesús
Fecha de publicación : 1-jul-2025
Resumen : 
Deep Reinforcement Learning (DRL) is a powerful framework for solving complex sequential decision-making problems, particularly in robotic control. However, its practical deployment is often hindered by the substantial amount of experience required for learning, which results in high computational and time costs. In this work, we propose a novel integration of DRL with semantic knowledge in the form of Knowledge Graph Embeddings (KGEs), aiming to enhance learning efficiency by providing contextual information to the agent. Our architecture combines KGEs with visual observations, enabling the agent to exploit environmental knowledge during training. Experimental validation with robotic manipulators in environments featuring both fixed and randomized target attributes demonstrates that our method achieves up to 60 reduction in learning time and improves task accuracy by approximately 15 percentage points, without increasing training time or computational complexity. These results highlight the potential of semantic knowledge to reduce sample complexity and improve the effectiveness of DRL in robotic applications.
Descripción : Artículos en revistas
URI : https:doi.org10.3390robotics14070086
http://hdl.handle.net/11531/101265
ISSN : 2218-6581
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-208R14,78 MBUnknownVisualizar/Abrir
IIT-25-208R_preview2,98 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.