Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/104566
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRodríguez Abella, Álvaroes-ES
dc.date.accessioned2025-09-25T08:49:32Z-
dc.date.available2025-09-25T08:49:32Z-
dc.date.issued2023-06-01es_ES
dc.identifier.issn0219-8878es_ES
dc.identifier.urihttps://doi.org/10.1142/S0219887823501232es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractThe Lagrange–Dirac interconnection theory has been developed for primitive subsystems coupled by a standard interaction Dirac structure, i.e. a structure of the form D int = Σ int ⊕ Σ ∘ int , where Σ int ⊂ T ( T ∗ Q ) is a regular distribution, Σ ∘ int ⊂ T ∗ ( T ∗ Q ) is its annihilator and Q is the configuration manifold of the theory. In this work, we extend this theory to allow for parameter-dependent subsystems coupled by nonstandard interaction Dirac structures. This is done, first, by using the Dirac tensor product and, then, by using interaction forces. Both approaches are shown to be equivalent, and also equivalent to a variational principle. After that, we demonstrate the relevance of this generalization by investigating three applications. First, an electromechanical system is modeled; namely, a piston driven by an ideal DC motor through a scotch-yoke mechanism. Second, we relate the interconnection theory to the Euler–Poincaré–Suslov reduction. More specifically, we show that the reduced system may be regarded as an interconnected Lagrange–Dirac system with parameters. The nonholonomic Euler top is presented as a particular instance of this situation. Lastly, control interconnected systems are defined and a control for a planar rigid body with wheels is designed.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: International Journal of Geometric Methods in Modern Physics, Periodo: 1, Volumen: 20, Número: 7, Página inicial: 2350124 , Página final: .es_ES
dc.titleInterconnection of Lagrange–Dirac systems through nonstandard interaction structureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsControl theory Dirac structureimplicit Lagrangian systeminter connectionnon holonomic mechanics reduction by symmetriesen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
Interconnection of Lagrange Dirac systems through.pdf673,1 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.