Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/108419
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGallen, Andreues-ES
dc.contributor.authorMuñoz Biosca, Joanes-ES
dc.contributor.authorCastro Ponce, Marioes-ES
dc.contributor.authorHernández Machado, Auroraes-ES
dc.date.accessioned2026-01-29T05:18:28Z-
dc.date.available2026-01-29T05:18:28Z-
dc.date.issued2026-01-01es_ES
dc.identifier.issn1070-6631es_ES
dc.identifier.urihttps://doi.org/10.1063/5.0304652es_ES
dc.identifier.urihttp://hdl.handle.net/11531/108419-
dc.descriptionArtículos en revistases_ES
dc.description.abstractWhen simulating three-dimensional flows interacting with deformable and elastic obstacles, current methods often encounter complexities in the governing equations and challenges in numerical implementation. In this work, we introduce a novel numerical formulation for simulating incompressible viscous flows at low Reynolds numbers in the presence of deformable interfaces. Our method employs a vorticity-stream vector formulation that significantly simplifies the fluid solver, transforming it into a set of coupled Poisson problems. The body–fluid interface is modeled using a phase field, allowing for the incorporation of various free-energy models to account for membrane bending and surface tension. In contrast to existing three-dimensional approaches, such as lattice Boltzmann methods or boundary-integral techniques, our formulation is lightweight and grounded in classical fluid mechanics principles, making it implementable with standard finite-difference techniques. We demonstrate the capabilities of our method by simulating the evolution of a single vesicle or droplet in Newtonian Poiseuille and Couette flows under different free-energy models, successfully recovering canonical axisymmetric shapes and stress profiles. Although this work primarily focuses on single-body dynamics in Newtonian suspending fluids, the framework can be extended to include body forces, inertial effects, and viscoelastic media.es-ES
dc.description.abstractWhen simulating three-dimensional flows interacting with deformable and elastic obstacles, current methods often encounter complexities in the governing equations and challenges in numerical implementation. In this work, we introduce a novel numerical formulation for simulating incompressible viscous flows at low Reynolds numbers in the presence of deformable interfaces. Our method employs a vorticity-stream vector formulation that significantly simplifies the fluid solver, transforming it into a set of coupled Poisson problems. The body–fluid interface is modeled using a phase field, allowing for the incorporation of various free-energy models to account for membrane bending and surface tension. In contrast to existing three-dimensional approaches, such as lattice Boltzmann methods or boundary-integral techniques, our formulation is lightweight and grounded in classical fluid mechanics principles, making it implementable with standard finite-difference techniques. We demonstrate the capabilities of our method by simulating the evolution of a single vesicle or droplet in Newtonian Poiseuille and Couette flows under different free-energy models, successfully recovering canonical axisymmetric shapes and stress profiles. Although this work primarily focuses on single-body dynamics in Newtonian suspending fluids, the framework can be extended to include body forces, inertial effects, and viscoelastic media.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Physics of Fluids, Periodo: 1, Volumen: online, Número: 1, Página inicial: 013119-1, Página final: 013119-9es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleDeformable bodies in a 3-dimensional viscous flow: Vorticity-stream vector formulationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsMicrofluídica (Microfluidics); Dinámica de Fluidos Computacional (CFD); Flujo viscoso (Viscous flow); Biomecánica celular (Cell biomechanics): Bajo número de Reynolds (Low Reynolds number); Vorticidad (Vorticity); Campo de fase (Phase-field)es-ES
dc.keywordsMicrofluídica (Microfluidics); Dinámica de Fluidos Computacional (CFD); Flujo viscoso (Viscous flow); Biomecánica celular (Cell biomechanics): Bajo número de Reynolds (Low Reynolds number); Vorticidad (Vorticity); Campo de fase (Phase-field)en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-26-037R_preview.pdf3,69 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.