Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/108419Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Gallen, Andreu | es-ES |
| dc.contributor.author | Muñoz Biosca, Joan | es-ES |
| dc.contributor.author | Castro Ponce, Mario | es-ES |
| dc.contributor.author | Hernández Machado, Aurora | es-ES |
| dc.date.accessioned | 2026-01-29T05:18:28Z | - |
| dc.date.available | 2026-01-29T05:18:28Z | - |
| dc.date.issued | 2026-01-01 | es_ES |
| dc.identifier.issn | 1070-6631 | es_ES |
| dc.identifier.uri | https://doi.org/10.1063/5.0304652 | es_ES |
| dc.identifier.uri | http://hdl.handle.net/11531/108419 | - |
| dc.description | Artículos en revistas | es_ES |
| dc.description.abstract | When simulating three-dimensional flows interacting with deformable and elastic obstacles, current methods often encounter complexities in the governing equations and challenges in numerical implementation. In this work, we introduce a novel numerical formulation for simulating incompressible viscous flows at low Reynolds numbers in the presence of deformable interfaces. Our method employs a vorticity-stream vector formulation that significantly simplifies the fluid solver, transforming it into a set of coupled Poisson problems. The body–fluid interface is modeled using a phase field, allowing for the incorporation of various free-energy models to account for membrane bending and surface tension. In contrast to existing three-dimensional approaches, such as lattice Boltzmann methods or boundary-integral techniques, our formulation is lightweight and grounded in classical fluid mechanics principles, making it implementable with standard finite-difference techniques. We demonstrate the capabilities of our method by simulating the evolution of a single vesicle or droplet in Newtonian Poiseuille and Couette flows under different free-energy models, successfully recovering canonical axisymmetric shapes and stress profiles. Although this work primarily focuses on single-body dynamics in Newtonian suspending fluids, the framework can be extended to include body forces, inertial effects, and viscoelastic media. | es-ES |
| dc.description.abstract | When simulating three-dimensional flows interacting with deformable and elastic obstacles, current methods often encounter complexities in the governing equations and challenges in numerical implementation. In this work, we introduce a novel numerical formulation for simulating incompressible viscous flows at low Reynolds numbers in the presence of deformable interfaces. Our method employs a vorticity-stream vector formulation that significantly simplifies the fluid solver, transforming it into a set of coupled Poisson problems. The body–fluid interface is modeled using a phase field, allowing for the incorporation of various free-energy models to account for membrane bending and surface tension. In contrast to existing three-dimensional approaches, such as lattice Boltzmann methods or boundary-integral techniques, our formulation is lightweight and grounded in classical fluid mechanics principles, making it implementable with standard finite-difference techniques. We demonstrate the capabilities of our method by simulating the evolution of a single vesicle or droplet in Newtonian Poiseuille and Couette flows under different free-energy models, successfully recovering canonical axisymmetric shapes and stress profiles. Although this work primarily focuses on single-body dynamics in Newtonian suspending fluids, the framework can be extended to include body forces, inertial effects, and viscoelastic media. | en-GB |
| dc.format.mimetype | application/pdf | es_ES |
| dc.language.iso | en-GB | es_ES |
| dc.source | Revista: Physics of Fluids, Periodo: 1, Volumen: online, Número: 1, Página inicial: 013119-1, Página final: 013119-9 | es_ES |
| dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
| dc.title | Deformable bodies in a 3-dimensional viscous flow: Vorticity-stream vector formulation | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
| dc.rights.holder | es_ES | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
| dc.keywords | Microfluídica (Microfluidics); Dinámica de Fluidos Computacional (CFD); Flujo viscoso (Viscous flow); Biomecánica celular (Cell biomechanics): Bajo número de Reynolds (Low Reynolds number); Vorticidad (Vorticity); Campo de fase (Phase-field) | es-ES |
| dc.keywords | Microfluídica (Microfluidics); Dinámica de Fluidos Computacional (CFD); Flujo viscoso (Viscous flow); Biomecánica celular (Cell biomechanics): Bajo número de Reynolds (Low Reynolds number); Vorticidad (Vorticity); Campo de fase (Phase-field) | en-GB |
| Aparece en las colecciones: | Artículos | |
Ficheros en este ítem:
| Fichero | Tamaño | Formato | |
|---|---|---|---|
| IIT-26-037R_preview.pdf | 3,69 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.