Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/108572| Título : | Human vs Machine Learning: Best Approach to Early Detect University Dropout Rates |
| Autor : | Aguayo Martín, Sofía Donate-Beby, Belén Amo-Filva, Daniel Llauró, Alba Simón Grabalos, David Alsina Claret, María Fonseca Escudero, David Necchi, Silvia Romero Yesa, Susana Aláez Martínez, Marian Torres Lucas, Jorge Martínez Felipe, María |
| Fecha de publicación : | 15-jul-2025 |
| Editorial : | Springer Nature (Berlin, Alemania) |
| Resumen : | . .The high student dropout rates and academic failuresin Spanish higher education institutions have been a persistent issue. Spain is among the European Union countries with the worst dropout rates, with recent data from the University Ministry indicating a 33.2% dropout rate in the 2022–2023 academic year. The multifaceted nature of dropout factors includes low academic performance, poor social support, low socio-economic status, pessimism, and lack of motivation. Despite efforts to address these issues, dropout rates remain high, necessitating more effective solutions. This study employs a longitudinal design to test the alignment of tutors’ and students’ perceptions with machine learning predictions. The analysissuggeststhat a combined approach, integrating human insights and machine learning, enhances predictive accuracy. The findings highlight the critical role of human judgment in capturing qualitative aspects that data-driven models might miss, advocating for a synergistic approach to improve educational outcomes. |
| Descripción : | Capítulos en libros |
| URI : | https://doi.org/10.1007/978-981-96-5658-5_111 |
| Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
| Fichero | Tamaño | Formato | |
|---|---|---|---|
| 20262493156679_Human vs Machine TEEM 2024.pdf | 296,7 kB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.