Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/108572
Título : Human vs Machine Learning: Best Approach to Early Detect University Dropout Rates
Autor : Aguayo Martín, Sofía
Donate-Beby, Belén
Amo-Filva, Daniel
Llauró, Alba
Simón Grabalos, David
Alsina Claret, María
Fonseca Escudero, David
Necchi, Silvia
Romero Yesa, Susana
Aláez Martínez, Marian
Torres Lucas, Jorge
Martínez Felipe, María
Fecha de publicación : 15-jul-2025
Editorial : Springer Nature (Berlin, Alemania)
Resumen : .
.The high student dropout rates and academic failuresin Spanish higher education institutions have been a persistent issue. Spain is among the European Union countries with the worst dropout rates, with recent data from the University Ministry indicating a 33.2% dropout rate in the 2022–2023 academic year. The multifaceted nature of dropout factors includes low academic performance, poor social support, low socio-economic status, pessimism, and lack of motivation. Despite efforts to address these issues, dropout rates remain high, necessitating more effective solutions. This study employs a longitudinal design to test the alignment of tutors’ and students’ perceptions with machine learning predictions. The analysissuggeststhat a combined approach, integrating human insights and machine learning, enhances predictive accuracy. The findings highlight the critical role of human judgment in capturing qualitative aspects that data-driven models might miss, advocating for a synergistic approach to improve educational outcomes.
Descripción : Capítulos en libros
URI : https://doi.org/10.1007/978-981-96-5658-5_111
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
20262493156679_Human vs Machine TEEM 2024.pdf296,7 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.