Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/24708
Título : EEM 2017 Forecast Competition: Wind power generation prediction using autoregressive models
Autor : Dimoulkas, Ilias
Mazidi, Peyman
Herre, Lars Finn
Fecha de publicación : 6-jun-2017
Editorial : Technische Universität Dresden (Dresde, Alemania)
Resumen : 
Energy forecasting provides essential contribution to integrate renewable energy sources into power systems. Today,renewable energy from wind power is one of the fastest growing means of power generation. As wind power forecast accuracy gains growing significance, the number of models used for forecasting is increasing as well. In this paper, we propose an autoregressive (AR) model that can be used as a benchmark model to validate and rank different forecasting models and their accuracy. The presented paper and research was developed within the scope of the European energy market (EEM) 2017 wind power forecasting competition.
Descripción : Capítulos en libros
URI : http://hdl.handle.net/11531/24708
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-17-078A.pdf385,44 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.