Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/5717
Título : | Extraction of fuzzy rules using sensibility analysis in a neural network |
Autor : | Besada Juez, Jesus Manuel Sanz Bobi, Miguel Ángel |
Fecha de publicación : | 14-ago-2002 |
Editorial : | Sin editorial (Madrid, España) |
Resumen : | This paper proposes a new method for the extraction of knowledge from a trained type feed-forward neural network. The new knowledge extracted is expressed by fuzzy rules directly from a sensibility analysis between the inputs and outputs of the relationship that model the neural network. This easy method of extraction is based on the similarity of a fuzzy set with the derivative of the tangent hyperbolic function used as an activation function in the hidden layer of the neural network. The analysis performed is very useful, not only for the extraction of knowledge, but also to know the importance of every rule extracted in the whole knowledge and, furthermore, the importance of every input stimulating the neural network. |
Descripción : | Capítulos en libros |
URI : | http://hdl.handle.net/11531/5717 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-02-003A.pdf | 191,65 kB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.