Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/62331
Título : | Blood transfusion prediction using restricted Boltzmann machines |
Autor : | Cifuentes Quintero, Jenny Alexandra Yao, Yuanyuan Yan, Min Zheng, Bin |
Fecha de publicación : | 3 |
Resumen : | The availability of blood transfusion has been a recurrent concern for medical institutions and patients. Efficient management of this resource represents an important challenge for many hospitals. Likewise, rapid reaction during transfusion decisions and planning is a critical factor to maximize patient care. This paper proposes a novel strategy for predicting the blood transfusion need, based on available information, by means of Restricted Boltzmann Machines (RBM). By extracting and analyzing high-level features from 4831 patient records, RBM can deal with complex patterns recognition, helping supervised classifiers in the task of automatic identification of blood transfusion requirements. Results show that a successfully classification is obtained (96.85%), based only on available information from the patient records. |
Descripción : | Artículos en revistas |
URI : | 10.1080/10255842.2020.1742709 http://hdl.handle.net/11531/62331 |
ISSN : | 1025-5842 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-20-217R.pdf | 1,28 MB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.