Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/64273
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMora, Eliannees-ES
dc.contributor.authorCifuentes Quintero, Jenny Alexandraes-ES
dc.contributor.authorMarulanda García, Geovanny Albertoes-ES
dc.date.accessioned2021-12-06T04:07:28Z-
dc.date.available2021-12-06T04:07:28Z-
dc.date.issued2021-12-01es_ES
dc.identifier.issn1996-1073es_ES
dc.identifier.urihttps:doi.org10.3390en14237943es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractWind energy has been recognized as the most promising and economical renewable energy source, attracting increasing attention in recent years. However, considering the variability and uncertainty of wind energy, accurate forecasting is crucial to propel high levels of wind energy penetration within electricity markets. In this paper, a comparative framework is proposed where a suite of long short-term memory (LSTM) recurrent neural networks (RNN) models, inclusive of standard, bidirectional, stacked, convolutional, and autoencoder architectures, are implemented to address the existing gaps and limitations of reported wind power forecasting methodologies. These integrated networks are implemented through an iterative process of varying hyperparameters to better assess their effect, and the overall performance of each architecture, when tackling one-hour to three-hours ahead wind power forecasting. The corresponding validation is carried out through hourly wind power data from the Spanish electricity market, collected between 2014 and 2020. The proposed comparative error analysis shows that, overall, the models tend to showcase low error variability and better performance when the networks are able to learn in weekly sequences. The model with the best performance in forecasting one-hour ahead wind power is the stacked LSTM, implemented with weekly learning input sequences, with an average MAPE improvement of roughly 6, 7, and 49, when compared to standard, bidirectional, and convolutional LSTM models, respectively. In the case of two to three-hours ahead forecasting, the model with the best overall performance is the bidirectional LSTM implemented with weekly learning input sequences, showcasing an average improved MAPE performance from 2 to 23 when compared to the other LSTM architectures implemented. en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Energies, Periodo: 1, Volumen: online, Número: 23, Página inicial: 7943-1, Página final: 7493-26es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleShort-term forecasting of wind energy: a comparison of deep learning frameworkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordslong short-term memory; deep learning; wind power forecasting; time series forecastingen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-21-210R.pdf2,14 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.