Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/7871
Título : An incipient fault detection system based on the probabilistic radial basis function network. Application to the diagnosis of the condenser of a coal power plant
Autor : Muñoz San Roque, Antonio
Sanz Bobi, Miguel Ángel
Fecha de publicación : 1-dic-1998
Resumen : 
This paper introduces the probabilistc radial function network (PRBFN) and a new incipient fault detection system based on it. The PRBFN is a neural network model able to estimate IO mappings and probability density functions. These capabilities play a crucial role in the design of the proposed fault detction system, where faults are detected by comparing the actual behaviour of the plant with the predicted using a model of normal operation conditions. Once the reliable domain of the model has been defined, a comparison is made through a local estimation of the upper bound of the resulting residual under normal operation conditions. This procedure automatically adjusts the sensitivity of the fault detction system to the intrinsic characteristics of the underlying process and prevents false alarms by detecting unknown operating conditions.
Descripción : Artículos en revistas
URI : https:doi.org10.1016S0925-2312(98)00082-4
ISSN : 0925-2312
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-97-036A.pdf611,38 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.