Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88124
Título : Counting Minimal Triples for a Generalized Markoff Equation
Autor : Srinivasan, Anitha
Calvo Pascual, Luis Ángel
Fecha de publicación : 9-abr-2024
Resumen : .
If the generalized Markoff equation a2+b2+c2=3abc+m has a solution triple, then it has infinitely many solutions. For a positive integer m > 1, we show that all positive solution triples are generated by a finite set of triples that we call minimal triples. We exhibit a correspondence between the set of minimal triples with the first or second element equal to a, and the set of fundamental solutions of m−a2 by the form x2−3axy+y2 . This gives us a formula for the number of minimal triples in terms of fundamental solutions, and thus a way to calculate minimal triples using composition and reduction of binary quadratic forms, for which there are efficient algorithms. Additionally, using the above correspondence we also give a criterion for the existence of minimal triples of the form (1,b,c) , and present a formula for the number of such minimal triples.
Descripción : Artículos en revistas
URI : https://doi.org/10.1080/10586458.2024.2338279
ISSN : 1058-6458
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
202441110550974_Counting Minimal Triples for a Gen (1).pdf2,12 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.