Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88129
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorHernández Orallo, Enriquees-ES
dc.contributor.authorCalafate, Carlos T.es-ES
dc.date.accessioned2024-04-15T07:16:05Z-
dc.date.available2024-04-15T07:16:05Z-
dc.date.issued2023-08-05es_ES
dc.identifier.issn2079-9292es_ES
dc.identifier.urihttps://doi.org/10.3390/electronics12153354es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractIn this study, we explore the integration of cascading and ensemble techniques in Deep Learning (DL) to improve prediction accuracy on diabetes data. The primary approach involves creating multiple Neural Networks (NNs), each predicting the outcome independently, and then feeding these initial predictions into another set of NN. Our exploration starts from an initial preliminary study and extends to various ensemble techniques including bagging, stacking, and finally cascading. The cascading ensemble involves training a second layer of models on the predictions of the first. This cascading structure, combined with ensemble voting for the final prediction, aims to exploit the strengths of multiple models while mitigating their individual weaknesses. Our results demonstrate significant improvement in prediction accuracy, providing a compelling case for the potential utility of these techniques in healthcare applications, specifically for prediction of diabetes where we achieve compelling model accuracy of 91.5% on the test set on a particular challenging dataset, where we compare thoroughly against many other methodologies.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Electronics, Periodo: 1, Volumen: 12, Número: 15, Página inicial: 3354, Página final: .es_ES
dc.titleCascading and Ensemble Techniques in Deep Learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsneural networks; cascading; ensemble; diabetesen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
electronics-12-03354_dezarza_and_decurto.pdf513,2 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.