Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88129
Título : Cascading and Ensemble Techniques in Deep Learning
Autor : de Zarzà i Cubero, Irene
de Curtò i Díaz, Joaquim
Hernández Orallo, Enrique
Calafate, Carlos T.
Fecha de publicación : 5-ago-2023
Resumen : .
In this study, we explore the integration of cascading and ensemble techniques in Deep Learning (DL) to improve prediction accuracy on diabetes data. The primary approach involves creating multiple Neural Networks (NNs), each predicting the outcome independently, and then feeding these initial predictions into another set of NN. Our exploration starts from an initial preliminary study and extends to various ensemble techniques including bagging, stacking, and finally cascading. The cascading ensemble involves training a second layer of models on the predictions of the first. This cascading structure, combined with ensemble voting for the final prediction, aims to exploit the strengths of multiple models while mitigating their individual weaknesses. Our results demonstrate significant improvement in prediction accuracy, providing a compelling case for the potential utility of these techniques in healthcare applications, specifically for prediction of diabetes where we achieve compelling model accuracy of 91.5% on the test set on a particular challenging dataset, where we compare thoroughly against many other methodologies.
Descripción : Artículos en revistas
URI : https://doi.org/10.3390/electronics12153354
ISSN : 2079-9292
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
electronics-12-03354_dezarza_and_decurto.pdf513,2 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.