Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88136
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorRoig, Gemmaes-ES
dc.contributor.authorCalafate, Carlos T.es-ES
dc.date.accessioned2024-04-15T08:07:37Z-
dc.date.available2024-04-15T08:07:37Z-
dc.date.issued2023-06-25es_ES
dc.identifier.issn1424-8220es_ES
dc.identifier.urihttps://doi.org/10.3390/s23135899es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractThis paper presents an exploration into the capabilities of an adaptive PID controller within the realm of truck platooning operations, situating the inquiry within the context of Cognitive Radio and AI-enhanced 5G and Beyond 5G (B5G) networks. We developed a Deep Learning (DL) model that emulates an adaptive PID controller, taking into account the implications of factors such as communication latency, packet loss, and communication range, alongside considerations of reliability, robustness, and security. Furthermore, we harnessed a Large Language Model (LLM), GPT-3.5-turbo, to deliver instantaneous performance updates to the PID system, thereby elucidating its potential for incorporation into AI-enabled radio and networks. This research unveils crucial insights for augmenting the performance and safety parameters of vehicle platooning systems within B5G networks, concurrently underlining the prospective applications of LLMs within such technologically advanced communication environments.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Sensors, Periodo: 1, Volumen: 23, Número: 13, Página inicial: 5899, Página final: .es_ES
dc.titleLLM Adaptive PID Control for B5G Truck Platooning Systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsplatooning; coordination of vehicles; adaptive PID control; large language models; V2V communication; 5G and B5G systemsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
sensors-23-05899-v2_dezarza_and_decurto.pdf2,38 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.