Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88136
Título : LLM Adaptive PID Control for B5G Truck Platooning Systems
Autor : de Zarzà i Cubero, Irene
de Curtò i Díaz, Joaquim
Roig, Gemma
Calafate, Carlos T.
Fecha de publicación : 25-jun-2023
Resumen : .
This paper presents an exploration into the capabilities of an adaptive PID controller within the realm of truck platooning operations, situating the inquiry within the context of Cognitive Radio and AI-enhanced 5G and Beyond 5G (B5G) networks. We developed a Deep Learning (DL) model that emulates an adaptive PID controller, taking into account the implications of factors such as communication latency, packet loss, and communication range, alongside considerations of reliability, robustness, and security. Furthermore, we harnessed a Large Language Model (LLM), GPT-3.5-turbo, to deliver instantaneous performance updates to the PID system, thereby elucidating its potential for incorporation into AI-enabled radio and networks. This research unveils crucial insights for augmenting the performance and safety parameters of vehicle platooning systems within B5G networks, concurrently underlining the prospective applications of LLMs within such technologically advanced communication environments.
Descripción : Artículos en revistas
URI : https://doi.org/10.3390/s23135899
ISSN : 1424-8220
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
sensors-23-05899-v2_dezarza_and_decurto.pdf2,38 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.