Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88745
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAracil Fernández, Elisa Maríaes-ES
dc.contributor.authorDíaz Aguiluz, Elena Maríaes-ES
dc.contributor.authorGómez Bengoechea, Gonzaloes-ES
dc.contributor.authorMota López, Rosalíaes-ES
dc.contributor.authorRoch Dupré, Davides-ES
dc.date.accessioned2024-05-31T10:21:14Z-
dc.date.available2024-05-31T10:21:14Z-
dc.date.issued2024-06-01es_ES
dc.identifier.issn0303-8300es_ES
dc.identifier.urihttps:doi.org10.1007s11205-024-03345-4es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractAvailable data to depict socioeconomic realities are often scarce at the municipal level. Unlike recurring or continuous data, which are collected regularly or repeatedly, nonrecurrent data may be sporadic or irregular, due to significant costs for their compilation and limited resources at municipalities. To address regional data scarcity, we develop a bottom-up top-down methodology for constructing synthetic socioeconomic indicators combining a genetic algorithm and regression techniques. We apply our methodology for assessing income inequalities at 178 municipalities in Spain. The genetic algorithm draws the available data on circumstances or inequalities of opportunities that give birth to income disparities. Our methodology allows to mitigate the shortcomings arising from unavailable data. Thus, it is a suitable method to assess relevant socioeconomic conditions at a regional level that are currently obscured due to data unavailability. This is crucial to provide policymakers with an enhanced socioeconomic overview at regional administrative units, relevant to allocating public service funds.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Social Indicators Research, Periodo: 1, Volumen: online, Número: , Página inicial: 499, Página final: 521es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleRegional socioeconomic assessments with a genetic algorithm: an application on income inequality across municipalitieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsIncome inequality · Inequality of opportunities · Genetic algorithm · Socioeconomic indicator · Data scarcity · Municipalitiesen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-24-166R.pdf1,22 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.