Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88745
Título : Regional socioeconomic assessments with a genetic algorithm: an application on income inequality across municipalities
Autor : Aracil Fernández, Elisa María
Díaz Aguiluz, Elena María
Gómez Bengoechea, Gonzalo
Mota López, Rosalía
Roch Dupré, David
Fecha de publicación : 1-jun-2024
Resumen : 
Available data to depict socioeconomic realities are often scarce at the municipal level. Unlike recurring or continuous data, which are collected regularly or repeatedly, nonrecurrent data may be sporadic or irregular, due to significant costs for their compilation and limited resources at municipalities. To address regional data scarcity, we develop a bottom-up top-down methodology for constructing synthetic socioeconomic indicators combining a genetic algorithm and regression techniques. We apply our methodology for assessing income inequalities at 178 municipalities in Spain. The genetic algorithm draws the available data on circumstances or inequalities of opportunities that give birth to income disparities. Our methodology allows to mitigate the shortcomings arising from unavailable data. Thus, it is a suitable method to assess relevant socioeconomic conditions at a regional level that are currently obscured due to data unavailability. This is crucial to provide policymakers with an enhanced socioeconomic overview at regional administrative units, relevant to allocating public service funds.
Descripción : Artículos en revistas
URI : https:doi.org10.1007s11205-024-03345-4
ISSN : 0303-8300
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-24-166R.pdf1,22 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.