Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/89945
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.date.accessioned2024-06-26T09:48:15Z-
dc.date.available2024-06-26T09:48:15Z-
dc.date.issued2024-06-05es_ES
dc.identifier.issn2079-9292es_ES
dc.identifier.urihttps://doi.org/10.3390/electronics13112208es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractIn this paper, we present a novel approach to state estimation in dynamic systems by combining Physics-Informed Neural Networks (PINNs) with an adaptive Unscented Kalman Filter (UKF). Recognizing the limitations of traditional state estimation methods, we refine the PINN architecture with hybrid loss functions and Monte Carlo Dropout for enhanced uncertainty estimation. The Unscented Kalman Filter is augmented with an adaptive noise covariance mechanism and incorporates model parameters into the state vector to improve adaptability. We further validate this hybrid framework by integrating the enhanced PINN with the UKF for a seamless state prediction pipeline, demonstrating significant improvements in accuracy and robustness. Our experimental results show a marked enhancement in state estimation fidelity for both position and velocity tracking, supported by uncertainty quantification via Bayesian inference and Monte Carlo Dropout. We further extend the simulation and present evaluations on a double pendulum system and state estimation on a quadcopter drone. This comprehensive solution is poised to advance the state-of-the-art in dynamic system estimation, providing unparalleled performance across control theory, machine learning, and numerical optimization domains.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Electronics, Periodo: 1, Volumen: 13, Número: 11, Página inicial: 2208, Página final: .es_ES
dc.titleHybrid State Estimation: Integrating Physics-Informed Neural Networks with Adaptive UKF for Dynamic Systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsPhysics-Informed Neural Networks; Unscented Kalman Filter (UKF); state estimationen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
electronics-13-02208-v2_decurto_and_dezarza.pdf1,63 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.