Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/96188
Título : | Torelli theorem for moduli stacks of vector bundles and principal G-bundles |
Autor : | Alfaya Sánchez, David Biswas, Indranil Gómez de Quiroga, Tomás Luis |
Fecha de publicación : | 1-ene-2025 |
Resumen : | Given any irreducible smooth complex projective curve X, of genus at least 2, consider the moduli stack of vector bundles on X of fixed rank and determinant. It is proved that the isomorphism class of the stack uniquely determines the isomorphism class of the curve X and the rank of the vector bundles. The case of trivial determinant, rank 2 and genus 2 is specially interesting: the curve can be recovered from the moduli stack, but not from the moduli space (since this moduli space is P3 thus independently of the curve). We also prove a Torelli theorem for moduli stacks of principal G-bundles on a curve of genus at least 3, where G is any non-abelian reductive group. |
Descripción : | Artículos en revistas |
URI : | https:doi.org10.1016j.geomphys.2024.105350 http://hdl.handle.net/11531/96188 |
ISSN : | 0393-0440 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
IIT-24-315R | 451,46 kB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.