Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96200
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRojo Yepes, Miguel Ángeles-ES
dc.contributor.authorGalici, Marcoes-ES
dc.contributor.authorSaldarriaga Zuluaga, Sergio Daniloes-ES
dc.contributor.authorLópez-Lezama, Jesús M.es-ES
dc.contributor.authorMuñoz Galeano, Nicoláses-ES
dc.date.accessioned2024-11-25T16:44:06Z-
dc.date.available2024-11-25T16:44:06Z-
dc.date.issued2024-11-01es_ES
dc.identifier.issn2032-6653es_ES
dc.identifier.urihttps:doi.org10.3390wevj15110493es_ES
dc.identifier.urihttp://hdl.handle.net/11531/96200-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThis paper presents a novel grid-to-vehicle modeling framework that leverages probabilistic methods and neural networks to accurately forecast electric vehicle (EV) charging demand and overall energy consumption. The proposed methodology, tailored to the specific context of Medellin, Colombia, provides valuable insights for optimizing charging infrastructure and grid operations. Based on collected local data, mathematical models are developed and coded to accurately reflect the characteristics of EV charging. Through a rigorous analysis of criteria, indices, and mathematical relationships, the most suitable model for the city is selected. By combining probabilistic modeling with neural networks, this study offers a comprehensive approach to predicting future energy demand as EV penetration increases. The EV charging model effectively captures the charging behavior of various EV types, while the neural network accurately forecasts energy demand. The findings can inform decision-making regarding charging infrastructure planning, investment strategies, and policy development to support the sustainable integration of electric vehicles into the power grid.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: World Electric Vehicle Journal, Periodo: 1, Volumen: online, Número: 11, Página inicial: 493-1, Página final: 493-18es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleA novel neuro-probabilistic framework for energy demand forecasting in Electric Vehicle integrationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordselectric vehicle charging; forecasting; neural networks; probabilistic approachen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-309R919,36 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.