Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96233
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRajora, GopaL Lales-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorBertling Tjemberg, Linaes-ES
dc.contributor.authorUrrea Cabus, José Eduardoes-ES
dc.date.accessioned2024-11-25T16:48:41Z-
dc.date.available2024-11-25T16:48:41Z-
dc.date.issued2024-06-01es_ES
dc.identifier.issn1751-8687es_ES
dc.identifier.urihttps:doi.org10.1049gtd2.13183es_ES
dc.identifier.urihttp://hdl.handle.net/11531/96233-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractPower system protection and asset management present persistent technical challenges, particularly in the context of the smart grid and renewable energy sectors. This paper aims to address these challenges by providing a comprehensive assessment of machine learning applications for effective asset management in power systems. The study focuses on the increasing demand for energy production while maintaining environmental sustainability and efficiency. By harnessing the power of modern technologies such as artificial intelligence (AI), machine learning (ML), and deep learning (DL), this research explores how ML techniques can be leveraged as powerful tools for the power industry. By showcasing practical applications and success stories, this paper demonstrates the growing acceptance of machine learning as a significant technology for current and future business needs in the power sector. Additionally, the study examines the barriers and difficulties of large-scale ML deployment in practical settings while exploring potential opportunities for these tactics. Through this overview, insights into the transformative potential of ML in shaping the future of power system asset management are provided.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: IET Generation Transmission & Distribution, Periodo: 1, Volumen: online, Número: 12, Página inicial: 2155, Página final: 2170es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleA review of asset management using artificial intelligence-based machine learning models: applications for the electric power and energy systemes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsPower System, Asset Management (AM), Artificial Intelligence (AI), Machine Learning (ML), Renewable Energy Source (RES), Grid, and Electricity Generation.en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-158R1,36 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.